Skip to main content Skip to search
HKSYU Library

    Librarian View

    LEADER 05838nam 2200793 a 4500
    001
    991007917609207546
    005
    20250904110956.0
    006
    m o d |
    007
    cr#-n---------
    008
    110405s2012 mauad ob 001 0 eng d
    010
     
     
    z| 2011010635
    020
     
     
    a| 9786613171177
    020
     
     
    a| 9781283171175
    020
     
     
    a| 1283171171
    020
     
     
    a| 9780123814807
    020
     
     
    a| 0123814804
    035
     
     
    a| (CKB)2670000000092948
    035
     
     
    a| (EBL)729031
    035
     
     
    a| (OCoLC)741491891
    035
     
     
    a| (SSID)ssj0000507801
    035
     
     
    a| (PQKBManifestationID)12207267
    035
     
     
    a| (PQKBTitleCode)TC0000507801
    035
     
     
    a| (PQKBWorkID)10550628
    035
     
     
    a| (PQKB)10134696
    035
     
     
    a| (Au-PeEL)EBL729031
    035
     
     
    a| (CaPaEBR)ebr10483440
    035
     
     
    a| (CaONFJC)MIL317117
    035
     
     
    z| (PPN)170267180
    035
     
     
    a| (PPN)16812310X
    035
     
     
    a| (OCoLC)795224972
    035
     
     
    a| (OCoLC)ocn795224972
    035
     
     
    a| (FR-PaCSA)88809627
    035
     
     
    a| (CaSebORM)9780123814791
    035
     
     
    a| (MiAaPQ)EBC729031
    035
     
     
    a| (FRCYB88809627)88809627
    035
     
     
    a| (EXLCZ)992670000000092948
    040
     
     
    a| MiAaPQ c| MiAaPQ d| MiAaPQ
    041
     
     
    a| eng
    050
     
    4
    a| QA76.9.D343 b| H36 2012
    082
    0
    4
    a| 006.3/12 2| 22
    082
     
     
    a| 006.312
    100
    1
     
    a| Han, Jiawei.
    245
    1
    0
    a| Data mining : b| concepts and techniques / c| Jiawei Han, Micheline Kamber, Jian Pei.
    250
     
     
    a| 3rd ed.
    260
     
     
    a| Burlington, Mass. : b| Elsevier, c| c2012.
    300
     
     
    a| 1 recurso en línea (745 páginas)
    336
     
     
    a| texto 2| rdacontent
    337
     
     
    a| computadora 2| rdamedia
    338
     
     
    a| recurso en línea 2| rdacarrier
    347
     
     
    a| text file
    490
    1
     
    a| The Morgan Kaufmann series in data management systems
    500
     
     
    a| Description based upon print version of record.
    504
     
     
    a| Includes bibliographical references and index.
    505
    0
     
    a| Front Cover; Data Mining: Concepts and Techniques; Copyright; Dedication; Table of Contents; Foreword; Foreword to Second Edition; Preface; Acknowledgments; About the Authors; Chapter 1. Introduction; 1.1 Why Data Mining?; 1.2 What Is Data Mining?; 1.3 What Kinds of Data Can Be Mined?; 1.4 What Kinds of Patterns Can Be Mined?; 1.5 Which Technologies Are Used?; 1.6 Which Kinds of Applications Are Targeted?; 1.7 Major Issues in Data Mining; 1.8 Summary; 1.9 Exercises; 1.10 Bibliographic Notes; Chapter 2. Getting to Know Your Data; 2.1 Data Objects and Attribute Types
    505
    8
     
    a| 2.2 Basic Statistical Descriptions of Data2.3 Data Visualization; 2.4 Measuring Data Similarity and Dissimilarity; 2.5 Summary; 2.6 Exercises; 2.7 Bibliographic Notes; Chapter 3. Data Preprocessing; 3.1 Data Preprocessing: An Overview; 3.2 Data Cleaning; 3.3 Data Integration; 3.4 Data Reduction; 3.5 Data Transformation and Data Discretization; 3.6 Summary; 3.7 Exercises; 3.8 Bibliographic Notes; Chapter 4. Data Warehousing and Online Analytical Processing; 4.1 Data Warehouse: Basic Concepts; 4.2 Data Warehouse Modeling: Data Cube and OLAP; 4.3 Data Warehouse Design and Usage
    505
    8
     
    a| 4.4 Data Warehouse Implementation4.5 Data Generalization by Attribute-Oriented Induction; 4.6 Summary; 4.7 Exercises; 4.8 Bibliographic Notes; Chapter 5. Data Cube Technology; 5.1 Data Cube Computation: Preliminary Concepts; 5.2 Data Cube Computation Methods; 5.3 Processing Advanced Kinds of Queries by Exploring Cube Technology; 5.4 Multidimensional Data Analysis in Cube Space; 5.5 Summary; 5.6 Exercises; 5.7 Bibliographic Notes; Chapter 6. Mining Frequent Patterns, Associations, and Correlations: Basic Concepts and Methods; 6.1 Basic Concepts; 6.2 Frequent Itemset Mining Methods
    505
    8
     
    a| 6.3 Which Patterns Are Interesting?-Pattern Evaluation Methods6.4 Summary; 6.5 Exercises; 6.6 Bibliographic Notes; Chapter 7. Advanced Pattern Mining; 7.1 Pattern Mining: A Road Map; 7.2 Pattern Mining in Multilevel, Multidimensional Space; 7.3 Constraint-Based Frequent Pattern Mining; 7.4 Mining High-Dimensional Data and Colossal Patterns; 7.5 Mining Compressed or Approximate Patterns; 7.6 Pattern Exploration and Application; 7.7 Summary; 7.8 Exercises; 7.9 Bibliographic Notes; Chapter 8. Classification: Basic Concepts; 8.1 Basic Concepts; 8.2 Decision Tree Induction
    505
    8
     
    a| 8.3 Bayes Classification Methods8.4 Rule-Based Classification; 8.5 Model Evaluation and Selection; 8.6 Techniques to Improve Classification Accuracy; 8.7 Summary; 8.8 Exercises; 8.9 Bibliographic Notes; Chapter 9. Classification: Advanced Methods; 9.1 Bayesian Belief Networks; 9.2 Classification by Backpropagation; 9.3 Support Vector Machines; 9.4 Classification Using Frequent Patterns; 9.5 Lazy Learners (or Learning from Your Neighbors); 9.6 Other Classification Methods; 9.7 Additional Topics Regarding Classification; 9.8 Summary; 9.9 Exercises; 9.10 Bibliographic Notes
    505
    8
     
    a| Chapter 10. Cluster Analysis: Basic Concepts and Methods
    520
     
     
    a| The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with
    546
     
     
    a| English
    650
     
    0
    a| Data mining.
    700
    1
     
    a| Kamber, Micheline.
    700
    1
     
    a| Pei, Jian.
    776
    0
    8
    z| 9780123814791
    776
    0
    8
    z| 0123814790
    830
     
    0
    a| Morgan Kaufmann series in data management systems.
    906
     
     
    a| BOOK
    945
     
     
    h| Supplement l| location i| barcode y| id f| bookplate a| callnoa b| callnob n| ADS320