Librarian View
LEADER 04664nam 2200553 i 4500
001
991007899242307546
005
20231002171047.0
006
m o d |
007
cr#cnu||||||||
008
190826s2019 enk o 000 0 eng d
020
a| 9781789617887
020
a| 178961788X
035
a| (CKB)4100000008779919
035
a| (MiAaPQ)EBC5837325
035
a| (PPN)238418006
035
a| (OCoLC)1125343553
035
a| (OCoLC)on1125343553
035
a| (FR-PaCSA)88872621
035
a| (CaSebORM)9781789612851
035
a| (DE-B1597)703222
035
a| (DE-B1597)9781789617887
035
a| (FRCYB88872621)88872621
035
a| (EXLCZ)994100000008779919
040
a| MiAaPQ
b| eng
e| rda
e| pn
c| MiAaPQ
d| MiAaPQ
041
0
a| eng
044
a| pl
c| PL
050
4
a| QA76.73.P98
b| .K975 2019
072
7
a| COM016000
2| bisacsh
082
0
a| 005.133
2| 23
100
1
a| Kyriakides, George,
e| author.
245
1
0
a| Hands-on ensemble learning with python :
b| build highly optimized ensemble machine learning models using scikit-learn and Keras /
c| George Kyriakides, Konstantinos G Margaritis.
250
a| First edition.
264
1
a| Birmingham ;
a| Mumbai :
b| Packt Publishing,
c| 2019.
300
a| 1 online resource (273 pages)
336
a| text
b| txt
2| rdacontent
337
a| computer
b| c
2| rdamedia
338
a| online resource
b| cr
2| rdacarrier
347
a| text file
504
a| Includes bibliographical references.
505
0
a| Chapter 1: A Machine Learning Refresher -- Chapter 2: Getting Started with Ensemble Learning -- Chapter 3: Voting -- Chapter 4: Stacking -- Chapter 5: Bagging -- Chapter 6: Boosting -- Chapter 7: Random Forests -- Chapter 8: Clustering -- Chapter 9: Classifying Fraudulent Transactions -- Chapter 10: Predicting Bitcoin Prices -- Chapter 11: Evaluating Sentiment on Twitter -- Chapter 12: Recommending Movies with Keras -- Chapter 13: Clustering World Happiness.
520
a| "Combine popular machine learning techniques to create ensemble models using Python Key Features Implement ensemble models using algorithms such as random forests and AdaBoost Apply boosting, bagging, and stacking ensemble methods to improve the prediction accuracy of your model Explore real-world data sets and practical examples coded in scikit-learn and Keras Book Description Ensembling is a technique of combining two or more similar or dissimilar machine learning algorithms to create a model that delivers superior predictive power. This book will demonstrate how you can use a variety of weak algorithms to make a strong predictive model. With its hands-on approach, you'll not only get up to speed with the basic theory but also the application of different ensemble learning techniques. Using examples and real-world datasets, you'll be able to produce better machine learning models to solve supervised learning problems such as classification and regression. In addition to this, you'll go on to leverage ensemble learning techniques such as clustering to produce unsupervised machine learning models. As you progress, the chapters will cover different machine learning algorithms that are widely used in the practical world to make predictions and classifications. You'll even get to grips with the use of Python libraries such as scikit-learn and Keras for implementing different ensemble models. By the end of this book, you will be well-versed in ensemble learning, and have the skills you need to understand which ensemble method is required for which problem, and successfully implement them in real-world scenarios. What you will learn Implement ensemble methods to generate models with high accuracy Overcome challenges such as bias and variance Explore machine learning algorithms to evaluate model performance Understand how to construct, evaluate, and apply ensemble models Analyze tweets in real time using Twitter's streaming API Use Keras to build an ensemble of neural networks for the MovieLens dataset Who this book is for This book is for data analysts, data scientists, machine learning engineers and other professionals who are looking to generate advanced models using ensemble techniques. An understanding of Python code and basic knowledge of statistics is required to make the most out of this book." -- Publisher's description.
588
a| Description based on print version record.
650
0
a| Python (Computer program language)
650
0
a| Machine learning.
700
1
a| Margaritis, Konstantinos G.,
e| (author)
776
0
8
z| 9781789612851
776
0
8
z| 1789612853
906
a| BOOK
945
h| Principal
l| location
i| barcode
y| id
f| bookplate
a| callnoa
b| callnob
n| DSA215