Librarian View
LEADER 02859cam a2200409 i 4500
001
991001662149707546
005
20221024171932.0
008
210928t20162017caua 001 0 eng d
010
a| 2017385426
020
a| 9781491912058
035
a| (HKSYU)b21407526-852hksyu_inst
035
a| (OCoLC)ocn915498936
040
a| BTCTA
b| eng
e| rda
c| BTCTA
d| DLC
d| YDXCP
d| CLE
d| BDX
d| JRZ
d| OCLCF
d| CHVBK
d| TMA
d| CUY
d| NZHMA
d| HUA
d| HK-SYU
042
a| lccopycat
050
4
a| QA76.73.P98
b| V365 2016
082
0
4
a| 006.312
2| 23
092
0
a| 006.312
b| VAN 2016
100
1
a| Vanderplas, Jacob T.
e| author.
245
1
0
a| Python data science handbook :
b| essential tools for working with data /
c| Jake VanderPlas.
246
3
0
a| Essential tools for working with data
250
a| First edition.
264
1
a| Sebastopol, CA :
b| O'Reilly Media, Inc.,
c| 2016.
264
4
c| ©2017
300
a| xvi, 529 pages :
b| illustrations ;
c| 24 cm
336
a| text
b| txt
2| rdacontent
337
a| unmediated
b| n
2| rdamedia
338
a| volume
b| nc
2| rdacarrier
500
a| Includes index.
505
0
a| IPython: beyond normal Python -- Introduction to NumPy -- Data manipulation with Pandas -- Visualization with Matplotlib -- Machine learning.
520
a| For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all-IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you'll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms.
650
0
a| Python (Computer program language)
650
0
a| Data mining.
907
a| b21407526
b| 08-01-22
c| 28-09-21
910
a| ykc
b| mkl
935
a| (HK-SYU)501035766
9| ExL
998
a| book
b| 11-11-21
c| m
d| a
e| -
f| eng
g| cau
h| 0
i| 0
945
h| Principal
l| location
i| barcode
y| id
f| bookplate
a| callnoa
b| callnob
n| ADS151