Skip to main content Skip to search
HKSYU Library

    Librarian View

    LEADER 14874cam a2203493 a 4500
    001
    991000840129707546
    005
    20220623131804.0
    008
    100902s2011 enka b 001 0 eng
    010
     
     
    a| 2010036174
    020
     
     
    a| 9780415573030 (hb)
    020
     
     
    a| 0415573033 (hb)
    020
     
     
    a| 9780415573047 (pb)
    020
     
     
    a| 0415573041 (pb)
    020
     
     
    a| 9780203829998 (eb)
    020
     
     
    a| 0203829999 (eb)
    035
     
     
    a| (HKSYU)b13971372-852hksyu_inst
    040
     
     
    a| DLC c| DLC d| BTCTA d| YDXCP d| NhCcYBP d| NhCcYME d| HK-SYU
    050
     
    4
    a| HB135 b| .H37 2011
    082
    0
    0
    a| 330.01/51 2| 22
    092
    0
     
    a| 330.0151 b| HAR 2011
    100
    1
     
    a| Harrison, Michael, d| 1944-
    245
    1
    0
    a| Mathematics for economics and finance / c| Michael Harrison, and Patrick Waldron.
    260
     
     
    a| Abingdon, [UK] : b| Routledge, c| 2011.
    300
     
     
    a| xxiii, 520 p. : b| ill. ; c| 25 cm.
    504
     
     
    a| Includes bibliographical references and index.
    650
     
    0
    a| Economics x| Mathematical models.
    650
     
    0
    a| Finance x| Mathematical models.
    650
     
    0
    a| Economics, Mathematics.
    700
    1
     
    a| Waldron, Patrick, d| 1963-
    907
     
     
    a| b13971372 b| 08-01-22 c| 01-03-13
    910
     
     
    a| ykc b| df
    935
     
     
    a| (HK-SYU)500808783 9| ExL
    970
    0
    1
    t| List of figures p| ix
    970
    0
    1
    t| List of tables p| xi
    970
    0
    1
    t| Foreword p| xiii
    970
    0
    1
    t| Preface p| xv
    970
    0
    1
    t| Acknowledgements p| xvii
    970
    0
    1
    t| List of abbreviations p| xviii
    970
    0
    1
    t| Notation and preliminaries p| xix
    970
    1
    1
    l| pt. I t| MATHEMATICS
    970
    1
    1
    t| Introduction p| 3
    970
    1
    1
    l| 1. t| Systems of linear equations and matrices p| 5
    970
    1
    1
    l| 1.1. t| Introduction p| 5
    970
    1
    1
    l| 1.2. t| Linear equations and examples p| 5
    970
    1
    1
    l| 1.3. t| Matrix operations p| 11
    970
    1
    1
    l| 1.4. t| Rules of matrix algebra p| 14
    970
    1
    1
    l| 1.5. t| Some special types of matrix and associated rules p| 15
    970
    1
    1
    l| 2. t| Determinants p| 30
    970
    1
    1
    l| 2.1. t| Introduction p| 30
    970
    1
    1
    l| 2.2. t| Preliminaries p| 30
    970
    1
    1
    l| 2.3. t| Definition and properties p| 31
    970
    1
    1
    l| 2.4. t| Co-factor expansions of determinants p| 34
    970
    1
    1
    l| 2.5. t| Solution of systems of equations p| 39
    970
    1
    1
    l| 3. t| Eigenvalues and eigenvectors p| 53
    970
    1
    1
    l| 3.1. t| Introduction p| 53
    970
    1
    1
    l| 3.2. t| Definitions and illustration p| 53
    970
    1
    1
    l| 3.3. t| Computation p| 54
    970
    1
    1
    l| 3.4. t| Unit eigenvalues p| 58
    970
    1
    1
    l| 3.5. t| Similar matrices p| 59
    970
    1
    1
    l| 3.6. t| Diagonalization p| 59
    970
    1
    1
    l| 4. t| Conic sections, quadratic forms and definite matrices p| 71
    970
    1
    1
    l| 4.1. t| Introduction p| 71
    970
    1
    1
    l| 4.2. t| Conic sections p| 71
    970
    1
    1
    l| 4.3. t| Quadratic forms p| 76
    970
    1
    1
    l| 4.4. t| Definite matrices p| 77
    970
    1
    1
    l| 5. t| Vectors and vector spaces p| 88
    970
    1
    1
    l| 5.1. t| Introduction p| 88
    970
    1
    1
    l| 5.2. t| Vectors in 2-space and 3-space p| 88
    970
    1
    1
    l| 5.3. t| n-Dimensional Euclidean vector spaces p| 100
    970
    1
    1
    l| 5.4. t| General vector spaces p| 101
    970
    1
    1
    l| 6. t| Linear transformations p| 128
    970
    1
    1
    l| 6.1. t| Introduction p| 128
    970
    1
    1
    l| 6.2. t| Definitions and illustrations p| 128
    970
    1
    1
    l| 6.3. t| Properties of linear transformations p| 131
    970
    1
    1
    l| 6.4. t| Linear transformations from Rn to Rm p| 137
    970
    1
    1
    l| 6.5. t| Matrices of linear transformations p| 138
    970
    1
    1
    l| 7. t| Foundations for vector calculus p| 143
    970
    1
    1
    l| 7.1. t| Introduction p| 143
    970
    1
    1
    l| 7.2. t| Affine combinations, sets, hulls and functions p| 143
    970
    1
    1
    l| 7.3. t| Convex combinations, sets, hulls and functions p| 146
    970
    1
    1
    l| 7.4. t| Subsets of n-dimensional spaces p| 148
    970
    1
    1
    l| 7.5. t| Basic topology p| 154
    970
    1
    1
    l| 7.6. t| Supporting and separating hyperplane theorems p| 157
    970
    1
    1
    l| 7.7. t| Visualizing functions of several variables p| 158
    970
    1
    1
    l| 7.8. t| Limits and continuity p| 159
    970
    1
    1
    l| 7.9. t| Fundamental theorem of calculus p| 162
    970
    1
    1
    l| 8. t| Difference equations p| 167
    970
    1
    1
    l| 8.1. t| Introduction p| 167
    970
    1
    1
    l| 8.2. t| Definitions and classifications p| 167
    970
    1
    1
    l| 8.3. t| Linear, first-order difference equations p| 172
    970
    1
    1
    l| 8.4. t| Linear, autonomous, higher-order difference equations p| 181
    970
    1
    1
    l| 8.5. t| Systems of linear difference equations p| 189
    970
    1
    1
    l| 9. t| Vector calculus p| 202
    970
    1
    1
    l| 9.1. t| Introduction p| 202
    970
    1
    1
    l| 9.2. t| Partial and total derivatives p| 202
    970
    1
    1
    l| 9.3. t| Chain rule and product rule p| 207
    970
    1
    1
    l| 9.4. t| Elasticities p| 211
    970
    1
    1
    l| 9.5. t| Directional derivatives and tangent hyperplanes p| 213
    970
    1
    1
    l| 9.6. t| Taylor's theorem: deterministic version p| 217
    970
    1
    1
    l| 9.7. t| Multiple integration p| 224
    970
    1
    1
    l| 9.8. t| Implicit function theorem p| 236
    970
    1
    1
    l| 10. t| Convexity and optimization p| 244
    970
    1
    1
    l| 10.1. t| Introduction p| 244
    970
    1
    1
    l| 10.2. t| Convexity and concavity p| 244
    970
    1
    1
    l| 10.3. t| Unconstrained optimization p| 257
    970
    1
    1
    l| 10.4. t| Equality-constrained optimization p| 261
    970
    1
    1
    l| 10.5. t| Inequality-constrained optimization p| 270
    970
    1
    1
    l| 10.6. t| Duality p| 278
    970
    1
    1
    l| pt. II t| APPLICATIONS
    970
    1
    1
    t| Introduction p| 287
    970
    1
    1
    l| 11. t| Macroeconomic applications p| 289
    970
    1
    1
    l| 11.1. t| Introduction p| 289
    970
    1
    1
    l| 11.2. t| Dynamic linear macroeconomic models p| 289
    970
    1
    1
    l| 11.3. t| Input-output analysis p| 294
    970
    1
    1
    l| 12. t| Single-period choice under certainty p| 299
    970
    1
    1
    l| 12.1. t| Introduction p| 299
    970
    1
    1
    l| 12.2. t| Definitions p| 299
    970
    1
    1
    l| 12.3. t| Axioms p| 301
    970
    1
    1
    l| 12.4. t| The consumer's problem and its dual p| 307
    970
    1
    1
    l| 12.5. t| General equilibrium theory p| 316
    970
    1
    1
    l| 12.6. t| Welfare theorems p| 323
    970
    1
    1
    l| 13. t| Probability theory p| 334
    970
    1
    1
    l| 13.1. t| Introduction p| 334
    970
    1
    1
    l| 13.2. t| Sample spaces and random variables p| 334
    970
    1
    1
    l| 13.3. t| Applications p| 338
    970
    1
    1
    l| 13.4. t| Vector spaces of random variables p| 343
    970
    1
    1
    l| 13.5. t| Random vectors p| 345
    970
    1
    1
    l| 13.6. t| Expectations and moments p| 347
    970
    1
    1
    l| 13.7. t| Multivariate normal distribution p| 351
    970
    1
    1
    l| 13.8. t| Estimation and forecasting p| 354
    970
    1
    1
    l| 13.9. t| Taylor's theorem: stochastic version p| 355
    970
    1
    1
    l| 13.10. t| Jensen's inequality p| 356
    970
    1
    1
    l| 14. t| Quadratic programming and econometric applications p| 371
    970
    1
    1
    l| 14.1. t| Introduction p| 371
    970
    1
    1
    l| 14.2. t| Algebra and geometry of ordinary least squares p| 371
    970
    1
    1
    l| 14.3. t| Canonical quadratic programming problem p| 377
    970
    1
    1
    l| 14.4. t| Stochastic difference equations p| 382
    970
    1
    1
    l| 15. t| Multi-period choice under certainty p| 394
    970
    1
    1
    l| 15.1. t| Introduction p| 394
    970
    1
    1
    l| 15.2. t| Measuring rates of return p| 394
    970
    1
    1
    l| 15.3. t| Multi-period general equilibrium p| 400
    970
    1
    1
    l| 15.4. t| Term structure of interest rates p| 401
    970
    1
    1
    l| 16. t| Single-period choice under uncertainty p| 415
    970
    1
    1
    l| 16.1. t| Introduction p| 415
    970
    1
    1
    l| 16.2. t| Motivation p| 415
    970
    1
    1
    l| 16.3. t| Pricing state-contingent claims p| 416
    970
    1
    1
    l| 16.4. t| The expected-utility paradigm p| 423
    970
    1
    1
    l| 16.5. t| Risk aversion p| 429
    970
    1
    1
    l| 16.6. t| Arbitrage, risk neutrality and the efficient markets hypothesis p| 434
    970
    1
    1
    l| 16.7. t| Uncovered interest rate parity: Siegel's paradox revisited p| 436
    970
    1
    1
    l| 16.8. t| Mean-variance paradigm p| 440
    970
    1
    1
    l| 16.9. t| Other non-expected-utility approaches p| 442
    970
    1
    1
    l| 17. t| Portfolio theory p| 448
    970
    1
    1
    l| 17.1. t| Introduction p| 448
    970
    1
    1
    l| 17.2. t| Preliminaries p| 448
    970
    1
    1
    l| 17.3. t| Single-period portfolio choice problem p| 450
    970
    1
    1
    l| 17.4. t| Mathematics of the portfolio frontier p| 457
    970
    1
    1
    l| 17.5. t| Market equilibrium and the capital asset pricing model p| 478
    970
    1
    1
    l| 17.6. t| Multi-currency considerations p| 487
    970
    0
    1
    t| Notes p| 493
    970
    0
    1
    t| References p| 501
    970
    0
    1
    t| Index p| 505
    970
    0
    1
    t| List of figures p| ix
    970
    0
    1
    t| List of tables p| xi
    970
    0
    1
    t| Foreword p| xiii
    970
    0
    1
    t| Preface p| xv
    970
    0
    1
    t| Acknowledgements p| xvii
    970
    0
    1
    t| List of abbreviations p| xviii
    970
    0
    1
    t| Notation and preliminaries p| xix
    970
    1
    1
    l| pt. I t| MATHEMATICS
    970
    1
    1
    t| Introduction p| 3
    970
    1
    1
    l| 1. t| Systems of linear equations and matrices p| 5
    970
    1
    1
    l| 1.1. t| Introduction p| 5
    970
    1
    1
    l| 1.2. t| Linear equations and examples p| 5
    970
    1
    1
    l| 1.3. t| Matrix operations p| 11
    970
    1
    1
    l| 1.4. t| Rules of matrix algebra p| 14
    970
    1
    1
    l| 1.5. t| Some special types of matrix and associated rules p| 15
    970
    1
    1
    l| 2. t| Determinants p| 30
    970
    1
    1
    l| 2.1. t| Introduction p| 30
    970
    1
    1
    l| 2.2. t| Preliminaries p| 30
    970
    1
    1
    l| 2.3. t| Definition and properties p| 31
    970
    1
    1
    l| 2.4. t| Co-factor expansions of determinants p| 34
    970
    1
    1
    l| 2.5. t| Solution of systems of equations p| 39
    970
    1
    1
    l| 3. t| Eigenvalues and eigenvectors p| 53
    970
    1
    1
    l| 3.1. t| Introduction p| 53
    970
    1
    1
    l| 3.2. t| Definitions and illustration p| 53
    970
    1
    1
    l| 3.3. t| Computation p| 54
    970
    1
    1
    l| 3.4. t| Unit eigenvalues p| 58
    970
    1
    1
    l| 3.5. t| Similar matrices p| 59
    970
    1
    1
    l| 3.6. t| Diagonalization p| 59
    970
    1
    1
    l| 4. t| Conic sections, quadratic forms and definite matrices p| 71
    970
    1
    1
    l| 4.1. t| Introduction p| 71
    970
    1
    1
    l| 4.2. t| Conic sections p| 71
    970
    1
    1
    l| 4.3. t| Quadratic forms p| 76
    970
    1
    1
    l| 4.4. t| Definite matrices p| 77
    970
    1
    1
    l| 5. t| Vectors and vector spaces p| 88
    970
    1
    1
    l| 5.1. t| Introduction p| 88
    970
    1
    1
    l| 5.2. t| Vectors in 2-space and 3-space p| 88
    970
    1
    1
    l| 5.3. t| n-Dimensional Euclidean vector spaces p| 100
    970
    1
    1
    l| 5.4. t| General vector spaces p| 101
    970
    1
    1
    l| 6. t| Linear transformations p| 128
    970
    1
    1
    l| 6.1. t| Introduction p| 128
    970
    1
    1
    l| 6.2. t| Definitions and illustrations p| 128
    970
    1
    1
    l| 6.3. t| Properties of linear transformations p| 131
    970
    1
    1
    l| 6.4. t| Linear transformations from Rn to Rm p| 137
    970
    1
    1
    l| 6.5. t| Matrices of linear transformations p| 138
    970
    1
    1
    l| 7. t| Foundations for vector calculus p| 143
    970
    1
    1
    l| 7.1. t| Introduction p| 143
    970
    1
    1
    l| 7.2. t| Affine combinations, sets, hulls and functions p| 143
    970
    1
    1
    l| 7.3. t| Convex combinations, sets, hulls and functions p| 146
    970
    1
    1
    l| 7.4. t| Subsets of n-dimensional spaces p| 148
    970
    1
    1
    l| 7.5. t| Basic topology p| 154
    970
    1
    1
    l| 7.6. t| Supporting and separating hyperplane theorems p| 157
    970
    1
    1
    l| 7.7. t| Visualizing functions of several variables p| 158
    970
    1
    1
    l| 7.8. t| Limits and continuity p| 159
    970
    1
    1
    l| 7.9. t| Fundamental theorem of calculus p| 162
    970
    1
    1
    l| 8. t| Difference equations p| 167
    970
    1
    1
    l| 8.1. t| Introduction p| 167
    970
    1
    1
    l| 8.2. t| Definitions and classifications p| 167
    970
    1
    1
    l| 8.3. t| Linear, first-order difference equations p| 172
    970
    1
    1
    l| 8.4. t| Linear, autonomous, higher-order difference equations p| 181
    970
    1
    1
    l| 8.5. t| Systems of linear difference equations p| 189
    970
    1
    1
    l| 9. t| Vector calculus p| 202
    970
    1
    1
    l| 9.1. t| Introduction p| 202
    970
    1
    1
    l| 9.2. t| Partial and total derivatives p| 202
    970
    1
    1
    l| 9.3. t| Chain rule and product rule p| 207
    970
    1
    1
    l| 9.4. t| Elasticities p| 211
    970
    1
    1
    l| 9.5. t| Directional derivatives and tangent hyperplanes p| 213
    970
    1
    1
    l| 9.6. t| Taylor's theorem: deterministic version p| 217
    970
    1
    1
    l| 9.7. t| Multiple integration p| 224
    970
    1
    1
    l| 9.8. t| Implicit function theorem p| 236
    970
    1
    1
    l| 10. t| Convexity and optimization p| 244
    970
    1
    1
    l| 10.1. t| Introduction p| 244
    970
    1
    1
    l| 10.2. t| Convexity and concavity p| 244
    970
    1
    1
    l| 10.3. t| Unconstrained optimization p| 257
    970
    1
    1
    l| 10.4. t| Equality-constrained optimization p| 261
    970
    1
    1
    l| 10.5. t| Inequality-constrained optimization p| 270
    970
    1
    1
    l| 10.6. t| Duality p| 278
    970
    1
    1
    l| pt. II t| APPLICATIONS
    970
    1
    1
    t| Introduction p| 287
    970
    1
    1
    l| 11. t| Macroeconomic applications p| 289
    970
    1
    1
    l| 11.1. t| Introduction p| 289
    970
    1
    1
    l| 11.2. t| Dynamic linear macroeconomic models p| 289
    970
    1
    1
    l| 11.3. t| Input-output analysis p| 294
    970
    1
    1
    l| 12. t| Single-period choice under certainty p| 299
    970
    1
    1
    l| 12.1. t| Introduction p| 299
    970
    1
    1
    l| 12.2. t| Definitions p| 299
    970
    1
    1
    l| 12.3. t| Axioms p| 301
    970
    1
    1
    l| 12.4. t| The consumer's problem and its dual p| 307
    970
    1
    1
    l| 12.5. t| General equilibrium theory p| 316
    970
    1
    1
    l| 12.6. t| Welfare theorems p| 323
    970
    1
    1
    l| 13. t| Probability theory p| 334
    970
    1
    1
    l| 13.1. t| Introduction p| 334
    970
    1
    1
    l| 13.2. t| Sample spaces and random variables p| 334
    970
    1
    1
    l| 13.3. t| Applications p| 338
    970
    1
    1
    l| 13.4. t| Vector spaces of random variables p| 343
    970
    1
    1
    l| 13.5. t| Random vectors p| 345
    970
    1
    1
    l| 13.6. t| Expectations and moments p| 347
    970
    1
    1
    l| 13.7. t| Multivariate normal distribution p| 351
    970
    1
    1
    l| 13.8. t| Estimation and forecasting p| 354
    970
    1
    1
    l| 13.9. t| Taylor's theorem: stochastic version p| 355
    970
    1
    1
    l| 13.10. t| Jensen's inequality p| 356
    970
    1
    1
    l| 14. t| Quadratic programming and econometric applications p| 371
    970
    1
    1
    l| 14.1. t| Introduction p| 371
    970
    1
    1
    l| 14.2. t| Algebra and geometry of ordinary least squares p| 371
    970
    1
    1
    l| 14.3. t| Canonical quadratic programming problem p| 377
    970
    1
    1
    l| 14.4. t| Stochastic difference equations p| 382
    970
    1
    1
    l| 15. t| Multi-period choice under certainty p| 394
    970
    1
    1
    l| 15.1. t| Introduction p| 394
    970
    1
    1
    l| 15.2. t| Measuring rates of return p| 394
    970
    1
    1
    l| 15.3. t| Multi-period general equilibrium p| 400
    970
    1
    1
    l| 15.4. t| Term structure of interest rates p| 401
    970
    1
    1
    l| 16. t| Single-period choice under uncertainty p| 415
    970
    1
    1
    l| 16.1. t| Introduction p| 415
    970
    1
    1
    l| 16.2. t| Motivation p| 415
    970
    1
    1
    l| 16.3. t| Pricing state-contingent claims p| 416
    970
    1
    1
    l| 16.4. t| The expected-utility paradigm p| 423
    970
    1
    1
    l| 16.5. t| Risk aversion p| 429
    970
    1
    1
    l| 16.6. t| Arbitrage, risk neutrality and the efficient markets hypothesis p| 434
    970
    1
    1
    l| 16.7. t| Uncovered interest rate parity: Siegel's paradox revisited p| 436
    970
    1
    1
    l| 16.8. t| Mean-variance paradigm p| 440
    970
    1
    1
    l| 16.9. t| Other non-expected-utility approaches p| 442
    970
    1
    1
    l| 17. t| Portfolio theory p| 448
    970
    1
    1
    l| 17.1. t| Introduction p| 448
    970
    1
    1
    l| 17.2. t| Preliminaries p| 448
    970
    1
    1
    l| 17.3. t| Single-period portfolio choice problem p| 450
    970
    1
    1
    l| 17.4. t| Mathematics of the portfolio frontier p| 457
    970
    1
    1
    l| 17.5. t| Market equilibrium and the capital asset pricing model p| 478
    970
    1
    1
    l| 17.6. t| Multi-currency considerations p| 487
    970
    0
    1
    t| Notes p| 493
    970
    0
    1
    t| References p| 501
    970
    0
    1
    t| Index p| 505
    998
     
     
    a| book b| 26-03-13 c| m d| a e| - f| eng g| enk h| 0 i| 0
    945
     
     
    h| Supplement l| location i| barcode y| id f| bookplate a| callnoa b| callnob n| ECON105